Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Chin J Nat Med ; 21(1): 65-80, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2184754

ABSTRACT

Acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had caused a global pandemic since 2019, and posed a serious threat to global health security. Traditional Chinese medicine (TCM) has played an indispensable role in the battle against the epidemic. Many components originated from TCMs were found to inhibit the production of SARS-CoV-2 3C-like protease (3CLpro) and papain-like protease (PLpro), which are two promising therapeutic targets to inhibit SARS-CoV-2. This study describes a systematic investigation of the roots and rhizomes of Sophora tonkinensis, which results in the characterization of 12 new flavonoids, including seven prenylated flavanones (1-7), one prenylated flavonol (8), two prenylated chalcones (9-10), one isoflavanone (11), and one isoflavan dimer (12), together with 43 known compounds (13-55). Their structures including the absolute configurations were elucidated by comprehensive analysis of MS, 1D and 2D NMR data, and time-dependent density functional theory electronic circular dichroism (TDDFT ECD) calculations. Compounds 12 and 51 exhibited inhibitory effects against SARS-CoV-2 3CLpro with IC50 values of 34.89 and 19.88 µmol·L-1, repectively while compounds 9, 43 and 47 exhibited inhibitory effects against PLpro with IC50 values of 32.67, 79.38, and 16.74 µmol·L-1, respectively.


Subject(s)
COVID-19 , Flavonoids , Flavonoids/pharmacology , Flavonoids/chemistry , SARS-CoV-2 , Rhizome , Peptide Hydrolases , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
2.
Arch Pharm Res ; 45(9): 631-643, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2035372

ABSTRACT

(±)-Decumicorine A (1) and (±)-epi-decumicorine A (2), two pairs of enantiomeric isoquinoline alkaloids featuring a novel phenylpropanoid-conjugated protoberberine skeleton, were isolated and purified from the rhizomes of Corydalis decumbens. The separation of (±)-1 and (±)-2 was achieved by chiral HPLC to produce four optically pure enantiomers. The structures and absolute configurations of compounds (-)-1, (+)-1, (-)-2, and (+)-2 were elucidated by spectroscopic analysis, ECD calculations, and X-ray crystallographic analyses. The two racemates were generated from a Diels-Alder [4 + 2] cycloaddition between jatrorrhizine and ferulic acid in the proposed biosynthetic pathways, which were fully verified by a biomimetic synthesis. Moreover, compound (+)-1 exhibited an antiviral entry effect on SARS-CoV-2 pseudovirus by blocking spike binding to the ACE2 receptor on HEK-293T-ACE2h host cells.


Subject(s)
Alkaloids , COVID-19 Drug Treatment , Corydalis , Alkaloids/chemistry , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Berberine Alkaloids , Biomimetics , Corydalis/chemistry , Humans , Isoquinolines , Molecular Structure , Rhizome , SARS-CoV-2
3.
Molecules ; 27(12)2022 Jun 13.
Article in English | MEDLINE | ID: covidwho-1911480

ABSTRACT

COVID-19, resulting from infection by the SARS-CoV-2 virus, caused a contagious pandemic. Even with the current vaccines, there is still an urgent need to develop effective pharmacological treatments against this deadly disease. Here, we show that the water and ethanol extracts of the root and rhizome of Polygonum cuspidatum (Polygoni Cuspidati Rhizoma et Radix), a common Chinese herbal medicine, blocked the entry of wild-type and the omicron variant of the SARS-CoV-2 pseudotyped virus into fibroblasts or zebrafish larvae, with IC50 values ranging from 0.015 to 0.04 mg/mL. The extracts were shown to inhibit various aspects of the pseudovirus entry, including the interaction between the spike protein (S-protein) and the angiotensin-converting enzyme II (ACE2) receptor, and the 3CL protease activity. Out of the chemical compounds tested in this report, gallic acid, a phytochemical in P. cuspidatum, was shown to have a significant anti-viral effect. Therefore, this might be responsible, at least in part, for the anti-viral efficacy of the herbal extract. Together, our data suggest that the extracts of P. cuspidatum inhibit the entry of wild-type and the omicron variant of SARS-CoV-2, and so they could be considered as potent treatments against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Fallopia japonica , Animals , Antiviral Agents/analysis , Antiviral Agents/pharmacology , Fallopia japonica/chemistry , Peptide Hydrolases , Plant Extracts/analysis , Plant Extracts/pharmacology , Rhizome/chemistry , SARS-CoV-2 , Viral Pseudotyping , Zebrafish
4.
J Pharm Biomed Anal ; 215: 114793, 2022 Jun 05.
Article in English | MEDLINE | ID: covidwho-1895251

ABSTRACT

Glycyrrhiza uralensis is a popular medicinal plant worldwide. Its roots and rhizomes are used as the traditional Chinese medicine Gan-Cao. However, little is known on medicinal potential and chemistry of the other parts of the plant. In this work, the biological activities and chemical components of the roots, stems, leaves, and seeds of G. uralensis were investigated comparatively. The four parts exhibited different but noticeable biological activities. The chemicals in the four parts were globally characterized by liquid chromatography coupled with mass spectrometry (LC/MS) on a Thermo Vanquish UHPLC system connected to a Q-Exactive quadrupole Orbitrap mass spectrometer. By integrating molecular networking, compound spectral matching, MS2LDA-based substructure recognition, and reference standards comparison, a total of 1301 compounds were rapidly characterized. Three flavonoid C-glycosides were purified and their structures were identified by NMR spectroscopic analysis. Orthogonal partial least squares-discriminate analysis (OPLS-DA) further revealed 196 differential chemicals for the four parts. This work will promote the medicinal resource utilization of G. uralensis.


Subject(s)
Glycyrrhiza uralensis , Glycyrrhiza , Plants, Medicinal , Chromatography, High Pressure Liquid , Glycyrrhiza uralensis/chemistry , Medicine, Chinese Traditional , Plant Roots/chemistry , Rhizome/chemistry
5.
J Med Microbiol ; 71(5)2022 May.
Article in English | MEDLINE | ID: covidwho-1853315

ABSTRACT

Introduction. As a novel global epidemic, corona virus disease 2019 (COVID-19) caused by SARS-CoV-2 brought great suffering and disaster to mankind. Recently, although significant progress has been made in vaccines against SARS-CoV-2, there are still no drugs for treating COVID-19. It is well known that traditional Chinese medicine (TCM) has achieved excellent efficacy in the treatment of COVID-19 in China. As a treasure-house of natural drugs, Chinese herbs offer a promising prospect for discovering anti-COVID-19 drugs.Hypothesis/Gap Statement. We proposed that Rhei Radix et Rhizome-Schisandrae Sphenantherae Fructus (RS) may have potential value in the treatment of COVID-19 patients by regulating immune response, protecting the cardiovascular system, inhibiting the production of inflammatory factors, and blocking virus invasion and replication processes.Aim. We aimed to explore the feasibility and molecular mechanisms of RS against COVID-19, to provide a reference for basic research and clinical applications.Methodology. Through literature mining, it is found that a Chinese herbal pair, RS, has potential anti-COVID-19 activity. In this study, we analysed the feasibility of RS against COVID-19 by high-throughput molecular docking and molecular dynamics simulations. Furthermore, we predicted the molecular mechanisms of RS against COVID-19 based on network pharmacology.Results. We proved the feasibility of RS anti-COVID-19 by literature mining, virtual docking and molecular dynamics simulations, and found that angiotensin converting enzyme 2 (ACE2) and 3C-like protease (3 CL pro) were also two critical targets for RS against COVID-19. In addition, we predicted the molecular mechanisms of RS in the treatment of COVID-19, and identified 29 main ingredients, 21 potential targets and 16 signalling pathways. Rhein, eupatin, (-)-catechin, aloe-emodin may be important active ingredients in RS. ALB, ESR1, EGFR, HMOX1, CTSL, and RHOA may be important targets against COVID-19. Platelet activation, renin secretion, ras signalling pathway, chemokine signalling pathway, and human cytomegalovirus infection may be important signalling pathways against COVID-19.Conclusion. RS plays a key role in the treatment of COVID-19, which may be closely related to immune regulation, cardiovascular protection, anti-inflammation, virus invasion and replication processes.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , COVID-19 Vaccines , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Feasibility Studies , Flavonoids , Humans , Molecular Docking Simulation , Rhizome , SARS-CoV-2
6.
Chin J Integr Med ; 28(12): 1127-1136, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1756894

ABSTRACT

Rhizoma phragmitis is a common Chinese herbal medicine whose effects are defined as 'clearing heat and fire, promoting fluid production to quench thirst, eliminating irritability, stopping vomiting, and disinhibiting urine'. During the Novel Coronavirus epidemic in 2020, the Weijing Decoction and Wuye Lugen Decoction, with Rhizoma phragmitis as the main herbal component, were included in The Pneumonia Treatment Protocol for Novel Coronavirus Infection (Trial Version 5) due to remarkable antiviral effects. Modern pharmacological studies have shown that Rhizoma phragmitis has antiviral, antioxidative, anti-inflammatory, analgesic, and hypoglycemic functions, lowers blood lipids and protects the liver and kidney. This review aims to provide a systematic summary of the botany, traditional applications, phytochemistry, pharmacology and toxicology of Rhizoma phragmitis.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Humans , Plant Extracts/pharmacology , Rhizome , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Antioxidants/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Medicine, Chinese Traditional , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Ethnopharmacology
7.
J Food Biochem ; 44(12): e13510, 2020 12.
Article in English | MEDLINE | ID: covidwho-1066711

ABSTRACT

Pneumonia refers to a death-causing infection. Astragali Radix (AR) and Atractylodis Macrocephalae Rhizoma (AMR) are widely used as traditional tonic and promising edible immunomodulatory herbal medicine, but the systemic mechanism is not well understood. Therefore, a strategy based on network pharmacology and molecular docking was designed to explore the systemic mechanism of AR-AMR acting on pneumonia. After a series of bioinformatics assays, seven kernel targets were obtained, including TNF, IL6, IFNG, IL1B, IL10, IL4, and TLR9. And seven key compounds were identified as the synergy components of AR-AMR acting on pneumonia, the four key compounds belonging to AR were (3R)-3-(2-hydroxy-3,4-dimethoxyphenyl)-7-chromanol, formononetin, quercetin, and kaempferol, the three key compounds belonging to AMR were atractylone, 14-acetyl-12-senecioyl-2E, 8E, 10E-atractylentriol, and α-Amyrin. The crucial pathways were mainly related to three modules, including immune diseases, infectious disease, and organismal systems. Collectively, these observations strongly suggest that the molecular mechanisms of AR-AMR regulating pneumonia were closely related to the correlation between inflammation and immune response. PRACTICAL APPLICATIONS: Astragali radix and Atractylodis macrocephalae rhizoma can be used as "medicine-food homology" for dietary supplement. AR and AMR are widely used as a traditional tonic and promising edible immunomodulatory herbal medicine. The AR-AMR herb pairs are used for compatibility many times in the recommended prescriptions in COVID-19 develop pneumonia in China. However, the ingredients and mechanisms of AR-AMR acting on Pneumonia via immunomodulation are unclear. In this paper, bioinformatics and network biology were used to systematically explore the mechanisms of the AR-AMR herb pairs in treatment of pneumonia, and further analyze the correlation mechanism between it and COVID-19 develop pneumonia. To sum up, our study reveals the interrelationships between components, targets, and corresponding biological processes of AR-AMR acting on pneumonia. Understanding these relationships may provide guidance and theoretical basis for the further application of AR-AMR herb pairs.


Subject(s)
Drugs, Chinese Herbal/chemistry , Pneumonia/immunology , Astragalus propinquus , COVID-19/immunology , Cytokines/genetics , Cytokines/immunology , Drugs, Chinese Herbal/pharmacology , Humans , Immunomodulation/drug effects , Molecular Docking Simulation , Pneumonia/drug therapy , Pneumonia/genetics , Rhizome/chemistry , COVID-19 Drug Treatment
8.
Zhongguo Zhong Yao Za Zhi ; 45(7): 1515-1520, 2020 Apr.
Article in Chinese | MEDLINE | ID: covidwho-324712

ABSTRACT

Qingfei Paidu Decoction is a traditional Chinese medicine compound recommended by National Health Commission of the People's Republic of China and National Administration of Traditional Chinese Medicine for clinical therapies of coronavirus disease 2019(COVID-19). Qingfei Paidu Decoction consists of 21 traditional Chinese medicines, such as Asari Radix et Rhizoma. However, the dosage of Asari Radix et Rhizoma has been questioned by some people, because of one ancient proverb. To explore the rationality of the dosage of Asari Radix et Rhizoma in Qingfei Paidu Decoction, this study systematically examined the ancient and modern physicians' understanding of the toxicity of Asari Radix et Rhizoma, and collated the application and dosage of Asari Radix et Rhizoma in ancient prescriptions and modern clinics based on literature analysis. As a result, we found that ancient and modern physicians have different understanding on the toxicity of Asari Radix et Rhizoma and that the theory about the dosage of Asari Radix et Rhizoma is flawed. We also found that the dose of Asari Radix et Rhizoma in ancient and modern clinical applications was not constrained by ancient experience. Physicians usually increase the dosage of Asari Radix et Rhizoma in clinical therapy according to the actual conditions, and there were no adverse reactions. Additionally, according to laws and regulations concerning medical affairs, physician could increase or decrease the dosage of the drug under special circumstances. Based on the analysis of safety and effectiveness of Asari Radix et Rhizoma in Qingfei Paidu Decoction, we conclude that the dose of Asari Radix et Rhizoma in Qingfei Paidu Decoction is safe, effective and reasonable.


Subject(s)
Betacoronavirus , Coronavirus Infections , Drugs, Chinese Herbal , Pandemics , Pneumonia, Viral , Rhizome , COVID-19 , China , Medicine, Chinese Traditional , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL